

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloperCopyright © Security Journey

n the realm of Secure Development, great emphasis was placed
on constructing applications with a strong foundation of security.
From the earliest stages of their training, every aspiring developer
learned the importance of diligence and careful consideration in
their coding practices.

They were instilled with an awareness of the prevalent vulnerabilities that
could potentially impact their code, and as they honed their skills, they
gained the ability to create elegant code by studying and having hands-on
training defending against these vulnerabilities. This process enabled them to
build applications efficiently and securely.

However, not all regions shared this enlightened approach. In many places,
developers were taught to write code with minimal regard for the possibility
of vulnerabilities, lacking any training in identifying or remedying these
weaknesses. Consequently, a shadow fell upon these lands, threatening their
security. Recognizing the impending danger, the wise king understood the
need to intervene.

I

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloperCopyright © Security Journey

Announcing his decree to all, the king summoned the attention of the kingdom:

“Listen closely, for the kingdom is facing a grave peril. Our enemies lie beyond our gates, growing and evolving with each
passing day. I call upon all Diligent Developers to embark on a
noble quest to liberate our neighboring lands from the clutches of the most common vulnerabilities. It is our duty to impart

knowledge and empower others, ensuring their continued freedom
from such threats in the future. The task before us is daunting,

but by fostering a resilient culture of security across our realm, we shall all reap the benefits.”
- King Repoleved

Copyright © Security Journeywww.SecurityJourney.com/DiligentDeveloper

enturing beyond the borders of their kingdom, the Diligent Developers stumbled upon a dilapidated gate guarded by a group of determined
security champions.

The champions recognized the dire consequences that could arise from such disrepair of broken access control, including unauthorized access
to sensitive information, tampering with data, and even complete control over the application. They had wanted to make repairs, but alas had

not been trained in how to do so.

Swiftly assessing the situation, the Diligent Developers set to work, applying the necessary security measures to fortify their neighbor’s gate and helping
the security champions ensure the overall safety of the application.

V

Access Control Lists:
Moreover, they devised comprehensive Access Control Lists (ACLs) that explicitly defined permissions for both
users and resources. By explicitly outlining what actions were permitted, they left no room for unauthorized
actions to take place.

IV.

Principle of Least Privilege:
Grant users the minimum level of access
necessary to perform their tasks, reducing
the risk of unauthorized actions.

II.

Proper Session Management:
Implement secure session management techniques, such as secure tokens, timeouts, and proper
handling of session termination, to prevent unauthorized users from hijacking active sessions. III.

›Security Controls to Repair the Gate of Broken Access Control

Repairing the Gate of Broken Access Control

Role-Based Access Control:
Implementing a robust RBAC
system ensures that users are granted
access only to the resources and

actions appropriate for their roles, restricting
unauthorized access.

I.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloper

Securely Transmit Data:
Use secure communication protocols, such as HTTPS and
TLS, to protect data during transmission over networks.

IV.

Regularly Update Cryptographic Libraries:
Keep cryptographic libraries up-to-date to benefit from security improvements and
avoid using outdated, insecure algorithms. III.

›Security Controls to Defeat the Wizard of Cryptographic Failure

Use Strong Encryption Algorithms:
Employ the latest, industry-accepted
encryption algorithms, such as AES or RSA,
to ensure strong protection of sensitive data.

I.

ith the fire of their newfound knowledge, the security champions insisted on continuing the journey alongside the Diligent Developers.
Moments later they encountered their second formidable adversary—the Wizard of Cryptographic Failures. Recognizing the gravity of this
threat and the potential havoc it could wreak if left unvanquished, our heroes quickly gathered the team to make a gameplan for success.

Cryptographic Failures manifested when applications failed to adequately protect sensitive data through robust encryption or employed weak
and outdated cryptographic algorithms. The repercussions of such failures were dire, encompassing unauthorized access to sensitive information, data
breaches, and irreversible damage to reputation.

Undeterred by the challenge, the team confronted the Wizard of Cryptographic Failures in a tense battle of skill and strategy, applying the proper
security controls, rendering the wizard’s nefarious schemes powerless and neutralizing the looming threat.

Defeating the Wizard of Cryptographic Failures

Implement Proper Key Management:
Securely generate, store, and
rotate encryption keys to prevent
unauthorized access to sensitive data.

II.

W

Copyright © Security Journeywww.SecurityJourney.com/DiligentDeveloper

he Diligent Developers and the security champions marched forward; their unity palpable. A formidable beast awaited their conquest—the
multi-headed dragon of injection attacks. Each head of this fearsome creature represented a distinct type of injection attack.T

SQL Injection: Exploiting
vulnerabilities in database queries,

allowing attackers to access, modify,
or delete sensitive data.

​Command Injection: Manipulating
vulnerable applications to execute
unauthorized system commands.​

Cross-Site Scripting (XSS):
Injecting malicious scripts into
web applications, compromising

user data and security.

​LDAP Injection:
Exploiting weaknesses in LDAP

queries to access or modify sensitive
directory information.​

Parameterized Queries:
Use parameterized queries or prepared
statements to separate user data from SQL
queries, mitigating SQL injection risks.

II.

Data Sanitization:
Implement data sanitization to remove any
potentially harmful characters or scripts from
user input, defending against XSS attacks.

III.
Secure LDAP Queries:
Utilize secure LDAP queries and input
validation to protect against LDAP
injection attacks.

IV.

›Security Controls for Slaying the Dragon of Injection Attacks

Slaying the Multi-headed Dragon of Injection Attacks

Input Validation:
Validate and sanitize user inputs to
prevent malicious data from being
injected into the application.

I.

Equipped with their knowledge and skill, the team faced the Multi-Headed Dragon of Injection Attacks. Engaged in a fierce and
dramatic battle, they adeptly applied the appropriate security control to each head of the dragon, systematically neutralizing the threats

and ultimately achieving victory over the menacing creature.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloper

he Diligent Developers could see their band of champions were exhilarated but tired from their fight. Noticing a castle in the distance, they
lead the weary travelers to its gates. As they suspected, the principles of secure design had not been used to build the castle, and the team
would need to fortify it before they could rest.

They carefully inspected the castle, identifying its vulnerabilities and weaknesses. For each vulnerability discovered, they applied the principles
of Secure Design, reinforcing the castle and ensuring its stability.

Their numbers were growing as word of their conquests moved across the land. They rested for the evening before heading back out on their path.

T

Defense in Depth:
Implement multiple layers of security to
create a robust defense against threats.

IV.

›Security Controls for Fortifying the Castle from Insecure Design

Least Privilege:
Ensure that users and components of
the application have the minimum
necessary access to perform their tasks.

I.
Fail Securely:
Design the
application to handle
errors and failures

securely, minimizing the impact
of any security incidents.

II.

Fortify the Castle from Insecure Design

Separation of Concerns:
Divide the application into distinct components, each
responsible for a specific function, to minimize complexity
and improve maintainability.

III.

Copyright © Security Journeywww.SecurityJourney.com/DiligentDeveloper

s the Diligent Developer ventured forth, they stumbled upon a mysterious and perplexing structure - the Labyrinth of Security
Misconfiguration. The labyrinth was a complex network of pathways, each leading to different components of the web application, all
interconnected in a tangled mess. The labyrinth’s design was the result of numerous misconfigurations, leaving the application vulnerable to a
multitude of threats.

The diligent developers knew they had to unravel this intricate web to ensure the web application’s security. They split up, each taking a team of eager
security champions and embarked on the daunting task of disentangling the labyrinth and addressing each security misconfiguration they encountered.

The team cleared a path through the once chaotic structure and carefully moved along the path towards the forest ahead…

A
Clearing the Labyrinth of Security Misconfiguration

Remove Unnecessary Functionality
and Components:
Remove any unnecessary components,
features, and dependencies that could

introduce potential security risks, simplifying the
application and reducing its attack surface.

II.

Regularly Patch and Update Software:
Update all software components to the latest
versions, patching known vulnerabilities
and minimizing potential risks.

III.
Implement Proper Access Controls:
Review user roles and permissions,
implementing the principle of least privilege
to limit access to only what was necessary.

IV.

Ensure Secure Storage of Sensitive Information:
Implemented strong encryption and secure storage mechanisms
to protect sensitive information within the application. V.

›Security Controls to Clear the Labyrinth of Security Misconfiguration

Establish a Repeatable Process to
Manage and Harden Configurations:
Create a robust and repeatable process
for managing configurations across all

environments, ensuring that the application was
consistently secure and hardened against attacks.

I.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloper

s they moved into the dense, dark forest, a security champion told the Diligent Developers tales they had heard about the Forest of Vulnerable
and Outdated Components. The security champions knew it threatened the stability and security of the web application, but never had the
skills to rid the forest of its mess.

The Diligent Developers explained that vulnerable and outdated components are software libraries, frameworks, and other dependencies that
have known security vulnerabilities or ones that are no longer maintained or supported. These components pose a significant risk to the application as
attackers can exploit the known vulnerabilities, potentially leading to unauthorized access, data breaches, and other security incidents.

They knew they had to replace these components with secure and up-to-date alternatives to protect the application from potential attacks. Armed with
their knowledge and skills, the team moved on the arduous task of identifying and replacing the outdated and vulnerable components in the forest:

A

Ridding the Forest of Vulnerable and Outdated Components

Replace Outdated and Unsupported Components:
Identify and replace components that are no longer
supported or have known security vulnerabilities.II.

Maintain an Up-to-date Inventory of
all Components Using a (SBOM):
Create a comprehensive inventory of
all software components, including

their versions and dependencies, using a Software Bill
of Materials (SBOM) to gain a clear understanding of
the application’s structure and the components that
need updating.

III.
Establish a Process for Updating
and Patching Components:
Implement a robust and repeatable process
for updating and patching components.

IV.

Regularly Monitor for Updates
and Security Patches:
Check for updates and security
patches for all components, applying

them promptly to minimize potential risks.

V.

›Security Control to Rid the Forest of Vulnerable and Outdated Components

Use (SCA) to Identify Vulnerable Components:
Employ a Software Composition Analysis (SCA) tool to
automatically detect and report any vulnerable components
in the application to address the issues swiftly.

I.

Copyright © Security Journeywww.SecurityJourney.com/DiligentDeveloper

s they moved into the fog-shrouded Valley of Silence, the Diligent Developer caught glimpses of the Whispering Shadow, a spectral figure
with the power to conceal malicious activities and evade detection. By exploiting Security Logging and Monitoring Failures, this elusive enemy
could wreak havoc on the kingdom’s web application, leaving no trace of its sinister deeds.

The Diligent Developers looked on proudly as their band of recruits were undeterred by the Whispering Shadow’s elusive nature. They
stepped in to battle and as they applied each security control, the Whispering Shadow’s power to conceal its activities waned. Their efforts forced the
shadow to retreat and relinquish its control over the Valley of Silence.

A

Taming the Whispering Shadow of Security Logging and Monitoring Failures

Regular Log Review and Analysis:
Establish a process for regularly reviewing and analyzing logs,
using automated tools and manual inspection to identify security
incidents and potential threats.

II.

Real-time monitoring and alerting:
Implement real-time monitoring and
alerting systems to quickly detect
and respond to security events,

minimizing the impact of attacks and reducing the
likelihood of successful breaches.

III.
Incident Response Planning:
Devise an incident response plan that
outlines roles, responsibilities, and
procedures for handling security events

detected through logging and monitoring, ensuring a
swift and effective response to potential threats.

IV.

Continuous Improvement:
Continuously refine and enhance logging and monitoring practices,
learning from past incidents and adjusting strategies to address
evolving threats.

V.

›Security Controls to Tame to Whispering Shadow of Security Logging and Monitoring Failures

Comprehensive Logging:
Set up comprehensive logging of security events,
covering various aspects of the application, such
as user authentication, access control, and data

manipulation, to track and detect malicious activities.

I.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloper

s the team moved out of the forest, they stumbled upon a castle shrouded in darkness, the lair of the Evil Twins, Identification and
Authentication Failures.

These wicked twins had the power to disrupt the web application’s security by exploiting weaknesses in the identification and authentication
processes, allowing unauthorized access and potentially leading to data breaches, account takeovers, and other security incidents.

Emboldened by their journey so far, the Diligent Developers quickly used their expertise to protect the web application and conquer the Evil Twins
and their plans.

A

Use Strong,
Unique Passwords:
Encourage users to create
strong, unique passwords and

implement password policies that require
a minimum length, complexity, and
frequent rotation, reducing the chances of
passwords being cracked or guessed.

II.

Limit Login Attempts
and Use Throttling:
To thwart brute force attacks, impose
limits on the number of failed login

attempts and implement throttling, progressively
increasing the delay between login attempts after
each unsuccessful try, slowing down attackers and
reducing their chances of success.

IV.
Monitor and Log
Authentication Events:
Set up monitoring and
logging of authentication

events, allowing the detection and
investigation of suspicious activities,
helping to identify potential breaches
and other security incidents.

VI.

Leverage Secure
Session Management:
Implement secure session
management practices,

including secure session cookies, proper
session timeouts, and secure handling
of session identifiers, preventing
unauthorized access to authenticated
user sessions.

V.

›Security Controls to Conquer the Twins of Identification and Authentication Failures

Implement Multi-factor
Authentication (MFA):
Introducing MFA, requiring users to
provide at least two forms of evidence

to verify their identity, making it more difficult for
attackers to impersonate legitimate users.

I.

Conquering the Twins of Identification and Authentication Failures

Employ Secure
Password Storage:
Ensure that passwords
are securely stored using

proper hashing algorithms and salted
hashes, making it more challenging
for attackers to obtain and use stolen
password data.

III.

Copyright © Security Journeywww.SecurityJourney.com/DiligentDeveloper

he team found themselves emerging from the Valley of Silence to a place where the very fabric of reality seemed to shift and change. Amidst
the chaos, they encountered a formidable foe: the Shapeshifting Serpent, the manifestation of Software and Data Integrity Failures. This
treacherous beast had the power to corrupt software and alter data, jeopardizing the web application’s reliability, performance, and security.

Realizing the dire threat posed by the Shapeshifting Serpent, the Diligent Developers confident in the team’s abilities, stepped forward, leading
the team to use their knowledge and skill to help maintain software and data integrity and vanquish the serpent, bringing clarity to the group that they
would need as they made their way to their final test.

T
Vanquishing the Shape-Shifting Serpent of Software and Integrity Failures

›Security Controls to Vanquish the Shape-Shifting Serpent of Software and Integrity Failures

Establish a Strong Integrity Protection Mechanism:
Implement a robust mechanism to protect the
integrity of software and data, such as digital
signatures, checksums, and cryptographic hashes.

I.
Securely Manage and Protect Cryptographic Keys:
Ensure that cryptographic keys are securely managed, stored,
and protected from unauthorized access, preventing attackers
from tampering with software and data.

II.

Verify the Integrity
of External Components:
Check the integrity of third-party
components and dependencies

before incorporating them into the
application, ensuring that they are free from
corruption or tampering.

III.
Implement Secure Software
Update Processes:
Establish a secure process for
updating the software and its

dependencies, which includes validating the
integrity of updates before installation.

IV.

Employ Secure Coding Practices:
Use secure coding practices to minimize vulnerabilities that could
lead to software and data integrity failures, such as input validation
and sanitization, and secure data storage and transmission.

V.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloper

s they made their way to the edge of the realm, a large wall on the horizon posed one the biggest problems of their journey - server-side request
forgery. Evidence of malicious requests, servers being tricked into executing unauthorized actions abound and the Diligent Developers quickly
got to work on assessing whether any bad actors had gained access to sensitive data or internal systems.

Relieved to find nothing further, working beside hundreds of security champions they began to secure the wall of server-side request forgery.
Satisfied that they had fortified their last lines well, they gathered the team for one final lesson.

Securing the Wall of Server-Side Request Forgery

A

Use a Strong Allowlist:
Employ a strong allowlist
of trusted domains and
IP addresses, preventing

the server from executing requests to
untrusted or malicious destinations.

II.

Sanitize User Input:
Sanitized user input,
ensuring that unsafe
or untrusted data

could not be used to manipulate
server requests.

III.
Monitor and Log
Network Activity:
Establish robust monitoring
and logging of network activity,

detecting and responding to any suspicious or
malicious behavior indicative of SSRF attacks.

IV.

›Security Controls to Tame to Secure the Wall of SSRF

Limit Outbound Traffic:
Restrict outbound traffic from the
application server, minimizing the
potential impact of SSRF attacks

and reducing the risk of unauthorized access to
internal systems.

I.

Copyright © Security Journey www.SecurityJourney.com/DiligentDeveloperCopyright © Security Journey

s the story reaches its conclusion, the Diligent Developers knew
that the ever-evolving nature of application security meant that
new threats would inevitably emerge. Vigilance and continuous
efforts would be crucial to ensure the ongoing security of all of
the realm’s web applications.

However, they recognized the strength and knowledge of the team of security
champions they had gathered along the way. The Diligent Developers
proudly passed along their shields for the champions to continue their
journey to impart their knowledge and build teams of Diligent Developers
across the realm.

Their tale would be told for generations, reminding all of the importance of
diligence, education, and the unwavering pursuit of application security.

A

The Diligent Developer Chronicles are part of a larger Diligent Developer
security awareness and education program. We believe that developers need
to be more than just aware of vulnerabilities, they need to have hands-on
training with the opportunity to actually break and fix code to build the skills
needed to build software securely. This program is designed for organizations
to roll out broadly, but the content is open to any individuals wanting to
further build their skills.

The Diligent Developer Security Awareness & Education Program Contains:

•	The Diligent Developer Chronicles: OWASP Top 10 - A resource to get
conversations going and raise awareness of the OWASP Top 10 across
your organization and for teams to keep as a reference.

•	Access to (3) OWASP Top 10 Video Lessons - podcast-style video lessons
to engage both developers and non-developers to build a foundational
understanding of the top application vulnerabilities today. Each lesson is
less than 15 minutes long.

	- OWASP Top 10: Part 1

	- OWASP Top 10: Part 2

	- OWASP Top 10: Part 3

•	Access to (3) Break/Fix Lessons - hands-on training on OWASP Top 10
vulnerabilities to build secure coding skills in your development team.
Each lesson should take less than 15 minutes to complete.

	- Server-Side Request Forgery

	- Security Logging and Monitoring

	- SQL Injection

•	Diligent Developer Assets - If you’d like to theme your program around the
Diligent Developer, we have provided Zoom Backgrounds, Sticker Designs,
Digital Badges, Emojis and artwork to support your efforts.

Because the content is based on the OWASP Top 10 published in late 2021,
this content will only be available until December 31, 2023.

Learn more at www.SecurityJourney.com/DiligentDeveloper

